Чему равно внутреннее сопротивление источника тока если полезная мощность


Репетитор-онлайн — подготовка к ЦТ

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение. Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а, определяемый законом Ома для полной цепи:

I1=ℰR1+r,

где ℰ — ЭДС источника тока; r — внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б. Сила тока короткого замыкания определяется формулой

i=ℰr,

где i — сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2, как показано на рис. в, определяемый законом Ома для полной цепи:

I2=ℰR2+r=ℰ2r;

в этом случае в цепи выделяется максимальная полезная мощность:

Pполезнmax=I22R2=I22r.

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2.

Для того чтобы найти силу тока I 2, запишем систему уравнений:

i=ℰr,I2=ℰ2r}

и выполним деление уравнений:

iI2=2.

Отсюда следует:

I2=i2=122=6,0 А.

Для того чтобы найти внутреннее сопротивление источника r, запишем систему уравнений:

I1=ℰR1+r,i=ℰr}

и выполним деление уравнений:

I1i=rR1+r.

Отсюда следует:

r=I1R1i−I1=2,0⋅5,012−2,0=1,0 Ом.

Рассчитаем максимальную полезную мощность:

Pполезнmax=I22r=6,02⋅1,0=36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Электродвижущая сила и внутреннее сопротивление

Электродвижущая сила (э) или э.д.с. это энергия, обеспечиваемая элементом или батареей на один кулон заряда, проходящего через них, она равна в вольтах (В). Он равен разности потенциалов на выводах ячейки, когда ток не течет.

  • e = электродвижущая сила в вольтах, В
  • E = энергия в джоулях, Дж
  • Q = заряд в кулонах, Кл

Батареи и элементы имеют внутреннее сопротивление (r) , что составляет единиц измерения в омах (Вт). Когда электричество течет по цепи, внутреннее сопротивление самого элемента сопротивляется прохождению тока, и поэтому тепловая энергия теряется в самом элементе.

  • e = электродвижущая сила в вольтах, В
  • I = ток в амперах, А
  • R = сопротивление нагрузки в цепи в Ом, Вт
  • r = внутреннее сопротивление ячейки в Ом, Вт

Мы можем изменить приведенное выше уравнение;

, а затем на

В этом уравнении ( В, ) появляется разность потенциалов на клеммах , измеренная в вольтах (В).Это разность потенциалов на выводах ячейки при протекании тока в цепи, она всегда меньше, чем ЭДС. ячейки.

Пример;

Q1) p.d. на выводах ячейки составляет 3,0 В, когда она не подключена к цепи и не течет ток. Когда ячейка подключена к цепи и течет ток 0,37 А, клемма p.d. падает до 2,8 В. Какое внутреннее сопротивление элемента?

График терминала п.d. против нынешних

Если мы построим график зависимости разности потенциалов на клеммах (V) от тока в цепи (I), мы получим прямую линию с отрицательным градиентом.

Мы можем им переставить э.д.с. уравнение сверху для соответствия общему выражению для прямой линии y = mx + c.

Из красных прямоугольников выше видно;

  • пересечение по оси Y равно ЭДС. ячейки
  • градиент графика равен -r, где r - внутреннее сопротивление ячейки.
.

Влияет ли внутреннее сопротивление на производительность?

С переходом от аналогового к цифровому, к батарее предъявляются новые требования. В отличие от аналоговых портативных устройств, которые потребляют постоянный ток, цифровое оборудование нагружает аккумулятор короткими сильными всплесками тока.

Одним из актуальных требований к батареям для цифровых приложений является низкое внутреннее сопротивление. Измеряемое в миллиомах внутреннее сопротивление - это привратник, который в значительной степени определяет время работы.Чем ниже сопротивление, тем меньше ограничений, с которыми сталкивается батарея при доставке необходимых скачков мощности. Высокое значение мОм может вызвать раннюю индикацию `` разряда батареи '' на кажущейся исправной батарее, потому что доступная энергия не может быть доставлена ​​требуемым образом и остается в батарее

Рисунок 1 демонстрирует характер напряжения и соответствующее время работы батареи с низким уровнем заряда. , среднее и высокое внутреннее сопротивление при подключении к цифровой нагрузке. Подобно мягкому мячу, который легко деформируется при сжатии, напряжение батареи с высоким внутренним сопротивлением модулирует напряжение питания и оставляет провалы, отражая импульсы нагрузки.Эти импульсы подталкивают напряжение к линии конца разряда, что приводит к преждевременному отключению. Как видно на графике, внутреннее сопротивление определяет большую часть времени работы.


Рисунок 1: Кривая разряда при импульсной нагрузке с различным внутренним сопротивлением. На этой диаграмме показано время работы 3 батарей одинаковой емкости, но с разными уровнями внутреннего сопротивления.

Время разговора в зависимости от внутреннего сопротивления

В рамках продолжающегося исследования по измерению времени работы батарей с различными уровнями внутреннего сопротивления компания Cadex Electronics проверила несколько батарей для сотовых телефонов, которые некоторое время находились в эксплуатации. Все батареи были одинакового размера и показали хорошие показания емкости при проверке анализатором аккумуляторов при постоянной разрядке нагрузки. Никель-кадмиевый пакет обеспечил емкость 113%, никель-металлогидридный блок - 107%, а литий-ионный - 94%.Внутреннее сопротивление варьировалось в широких пределах и составляло 155 мОм для никель-кадмиевого сплава, высокое 778 мОм для никель-металлогидрида и умеренное 320 мОм для литий-ионного. Эти показания внутреннего сопротивления типичны для стареющих батарей с таким химическим составом.

Давайте теперь проверим, как тестовые батареи работают на сотовом телефоне. Максимальный импульсный ток сотовых телефонов GSM (Глобальная система мобильной связи) составляет 2,5 ампера. Это представляет собой большой ток от относительно небольшой батареи около 800 миллиампер (мАч) часов.Например, импульс тока 2,4 ампера от батареи емкостью 800 мАч соответствует показателю C 3C. Это в три раза больше, чем у аккумулятора. Такие сильноточные импульсы могут быть доставлены только при низком внутреннем сопротивлении батареи.

На рисунках 2, 3 и 4 показано время разговора трех аккумуляторов при моделированном токе GSM 1С, 2С и 3С. Видно прямую зависимость между внутренним сопротивлением батареи и временем разговора. Никель-кадмиевый аккумулятор показал наилучшие результаты в данных обстоятельствах и обеспечил время разговора 120 минут при разряде 3C (оранжевая линия).никель-металлогидридные характеристики работают только при 1 ° C (синяя линия) и не работают при 3 ° C. литий-ионный обеспечивает умеренное время разговора 50 минут при температуре 3 ° C.


Рисунок 2: Разрядка никель-кадмиевых батарей и результирующее время разговора при 1С, 2С и 3С в соответствии с графиком нагрузки GSM.Тестируемая батарея имеет емкость 113%, внутреннее сопротивление - 155 мОм.


Рисунок 3: Разрядка и результирующее время разговора никель-металлогидрида при 1С, 2С и 3С в соответствии с графиком нагрузки GSM.Тестируемая батарея имеет емкость 107%, внутреннее сопротивление - 778 мОм.
Рис. 4: Разрядка и время разговора литий-ионной батареи при 1С, 2С и 3С в соответствии с графиком нагрузки GSM. Тестируемая батарея имеет емкость 94%, внутреннее сопротивление - 320 мОм.

Внутреннее сопротивление как функция заряда

Внутреннее сопротивление зависит от уровня заряда аккумулятора. Наибольшие изменения заметны на никелевых батареях.На рисунке 5 мы наблюдаем внутреннее сопротивление никель-металлогидрида в пустом состоянии, во время зарядки, при полной зарядке и после 4-часового периода отдыха.
Уровни сопротивления самые высокие при низком уровне заряда и сразу после зарядки. Вопреки распространенному мнению, наилучшая производительность аккумулятора достигается не сразу после полной зарядки, а после нескольких часов отдыха. Во время разрядки внутреннее сопротивление аккумулятора уменьшается, достигает минимального значения при половинном заряде и снова начинает расти (пунктирная линия).
Рисунок 5: Внутреннее сопротивление в металлогидридном никеле. Обратите внимание на более высокие показания сразу после полной разрядки и полной зарядки. Отдыхать аккумулятор перед использованием дает наилучшие результаты.
Ссылки: Shukla et al. 1998. Rodrigues et al. 1999.


Внутреннее сопротивление литий-ионных аккумуляторов достаточно стабильно от разряженного до полного заряда.Батарея асимптотически уменьшается с 270 мВт при 0% до 250 мВт при 70% -ном состоянии заряда. Наибольшие изменения происходят между 0% и 30% SoC.

Сопротивление свинцово-кислотной кислоты повышается с разрядом. Это изменение вызвано уменьшением удельного веса, истощением электролита, поскольку он становится более водянистым. Увеличение сопротивления почти линейно с уменьшением удельного веса. Остальные несколько часов частично восстановят аккумулятор, так как ионы сульфата могут восполнить себя.Изменение сопротивления между полной зарядкой и разрядкой составляет около 40%. Низкая температура увеличивает внутреннее сопротивление всех аккумуляторов и добавляет около 50% в интервале от + 30 ° C до -18 ° C к свинцово-кислотным аккумуляторам. На рис. 6 показано увеличение внутреннего сопротивления гелевой свинцово-кислотной батареи, используемой для инвалидных колясок.


Рисунок 6: Типичные показания внутреннего сопротивления свинцово-кислотного аккумулятора для инвалидных колясок.Аккумулятор разряжен от полного заряда до 10,50В. Показания были сняты при напряжении холостого хода (OCV).
Аккумуляторные лаборатории Cadex.

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «Связаться с нами» или напишите нам по адресу: BatteryU@cadex.com. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев для Battery University Group (BUG).

.

Что такое преобразование источника - преобразование напряжения в ток и тока в источник напряжения

Преобразование источника просто означает замену одного источника эквивалентным источником. Практический источник напряжения может быть преобразован в эквивалентный практический источник тока и аналогично практический источник тока в источник напряжения.

Любой практический источник напряжения или просто источник напряжения состоит из идеального источника напряжения, включенного последовательно с внутренним сопротивлением или импедансом (для идеального источника это сопротивление будет нулевым), выходное напряжение становится независимым от тока нагрузки.Элементы, батареи и генераторы являются примером источника напряжения.

Для любого практического источника тока или просто источника тока существует идеальный источник тока, параллельный внутреннему сопротивлению или импедансу, для идеального источника тока этот параллельный импеданс равен бесконечности.

Полупроводниковые устройства, такие как транзисторы и т. Д., Рассматриваются как источник тока, или выход, создаваемый источником постоянного или переменного напряжения, называется источником постоянного и переменного тока соответственно.

Источник напряжения и тока являются взаимно передаваемыми или, другими словами, может выполняться преобразование источника, то есть напряжение в источнике тока и ток в источник напряжения. Давайте поймем это, рассмотрев схему, приведенную ниже:

На рисунке A показан практический источник напряжения, подключенный последовательно с внутренним сопротивлением r v , а на рисунке B представлен практический источник тока с параллельным внутренним сопротивлением r i

Для практического источника напряжения ток нагрузки будет задан уравнением:
Где,

iL v - ток нагрузки для практического источника напряжения
V - напряжение
r v - внутреннее сопротивление источника напряжения
r L - сопротивление нагрузки

Предполагается, что сопротивление нагрузки r L подключено к клемме x-y.Аналогично для практического источника тока ток нагрузки задается как:
Где,

iL i - ток нагрузки для практического источника тока

I - текущий

r i - внутреннее сопротивление источника тока

r L - сопротивление нагрузки, подключенной к клемме x-y на рисунке B

Два источника становятся идентичными, если приравнять уравнение (1) и уравнение (2)

Однако для источника тока напряжение на клеммах x-y будет Iri, клеммы x-y разомкнуты.т.е.

В = I x r i

Следовательно, получим,

Следовательно, для любого практического источника напряжения, если идеальное напряжение равно V, а внутреннее сопротивление составляет r v , источник напряжения может быть заменен источником тока I с внутренним сопротивлением, параллельным источнику тока.

Преобразование источника: преобразование источника напряжения в источник тока

Когда источник напряжения подключен к сопротивлению последовательно и его необходимо преобразовать в источник тока, тогда сопротивление подключается параллельно источнику тока, как показано на рисунке выше.

Где I с = V с / R

Преобразование источника тока в источник напряжения

На приведенной выше принципиальной схеме источник тока, подключенный параллельно с сопротивлением, преобразуется в источник напряжения путем размещения сопротивления последовательно с источником напряжения.

Где, V с = I с / R

.

Что такое источник напряжения и источник тока - идеально и практично

A Источник - это устройство, преобразующее механическую, химическую, тепловую или другую форму энергии в электрическую. Другими словами, источник - это активный сетевой элемент, предназначенный для выработки электроэнергии.

В электрической сети доступны различные типы источников: источники напряжения и источники тока. Источник напряжения имеет форсирующую функцию ЭДС, тогда как источник тока имеет форсирующую функцию тока.

В комплекте:

Источники тока и напряжения далее классифицируются как идеальный источник или практический источник.

Источник напряжения

Источник напряжения - это устройство с двумя выводами, напряжение которого в любой момент времени является постоянным и не зависит от тока, потребляемого от него. Такой источник напряжения называется Идеальным источником напряжения и имеет нулевое внутреннее сопротивление.

Практически невозможно получить идеальный источник напряжения.

Источники, имеющие некоторое количество внутренних сопротивлений, известны как Практический источник напряжения . Из-за этого внутреннего сопротивления; Происходит падение напряжения, что приводит к снижению напряжения на клеммах. Чем меньше внутреннее сопротивление (r) источника напряжения, тем ближе он к идеальному источнику.

Символическое изображение идеального и практичного источника напряжения показано ниже.

На рисунке А, показанном ниже, показаны принципиальная схема и характеристики идеального источника напряжения:

На рисунке B ниже показаны принципиальная схема и характеристики практического источника напряжения:

Примером источников напряжения являются аккумуляторные батареи и генераторы переменного тока.

Источник тока

Источники тока далее подразделяются на идеальные и практические источники тока.

Идеальный источник тока - это двухконтактный схемный элемент, который подает одинаковый ток на любое сопротивление нагрузки, подключенное к его клеммам. Важно помнить, что ток, подаваемый источником тока, не зависит от напряжения на клеммах источника. У него бесконечное сопротивление.

Практический источник тока представляет собой идеальный источник тока, подключенный к сопротивлению параллельно.Символическое представление показано ниже:

Рисунок C, показанный ниже, показывает его характеристики. На рисунке D, показанном ниже, показаны характеристики практического источника тока.

Примером источников тока являются фотоэлементы, коллекторные токи транзисторов.

.

Смотрите также